Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Paris) ; 40(3): 275-282, 2024 Mar.
Artigo em Francês | MEDLINE | ID: mdl-38520103

RESUMO

Cells can be reprogrammed into senescence to adapt to a variety of stresses, most often affecting the genome integrity. Senescent cells accumulate with age or upon various insults in almost all tissues, and contribute to the development of several age-associated pathologies. Studying the molecular pathways involved in senescence induction, maintenance, or escape is challenged by the heterogeneity in the level of commitment to senescence, and by the pollution of senescent cell populations by proliferating pre- or post-senescent cells. We coped with these difficulties by developing a protocol for sorting senescent cells by flow cytometry, based on three major senescence markers : the SA-ß-Galactosidase activity, the size of the cells, and their granularity reflecting the accumulation of aggregates, lysosomes, and altered mitochondria. We address the issues related to sorting senescent cells, the pitfalls to avoid, and propose solutions for sorting viable cells expressing senescent markers at different extents.


Title: Tri des cellules sénescentes par cytométrie en flux - Des spécificitéset des pièges à éviter. Abstract: La sénescence est un état d'adaptation des cellules au stress qui contribue au vieillissement et au développement de nombreuses maladies. Étudier les voies moléculaires modulant l'induction, le maintien ou l'échappement de la sénescence est compliqué par la contamination des populations de cellules sénescentes par des cellules proliférantes pré- ou post-sénescentes. Pour contourner cette difficulté, nous avons développé un protocole de tri par cytométrie en flux, fondé sur trois marqueurs majeurs de sénescence (l'activité SA-ß-galactosidase, la taille et la granularité des cellules), qui permet de trier des cellules sénescentes viables, à des degrés choisis d'engagement dans le phénotype.


Assuntos
Senescência Celular , Lisossomos , Humanos , Senescência Celular/genética , Citometria de Fluxo
2.
Brain Behav Immun ; 117: 20-35, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38157948

RESUMO

BACKGROUND: Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT: By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION: Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.


Assuntos
Malária Cerebral , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Astrócitos , Senoterapia , Autofagia
3.
Bio Protoc ; 13(7): e4612, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056241

RESUMO

Cellular senescence is a reprogrammed cell state triggered as an adaptative response to a variety of stresses, most often those affecting the genome integrity. Senescent cells accumulate in most tissues with age and contribute to the development of several pathologies. Studying molecular pathways involved in senescence induction and maintenance, or in senescence escape, can be hindered by the heterogeneity of senescent cell populations. Here, we describe a flow cytometry strategy for sorting senescent cells according to three senescence canonical markers whose thresholds can be independently adapted to be more or less stringent: (i) the senescence-associated-ß-galactosidase (SA-ß-Gal) activity, detected using 5-dodecanoylaminofluorescein Di-ß-D-galactopyranoside (C12FDG), a fluorigenic substrate of ß-galactosidase; (ii) cell size, proportional to the forward scatter value, since increased size is one of the major changes observed in senescent cells; and (iii) cell granularity, proportional to the side scatter value, which reflects the accumulation of aggregates, lysosomes, and altered mitochondria in senescent cells. We applied this protocol to the sorting of normal human fibroblasts at the replicative senescence plateau. We highlighted the challenge of sorting these senescent cells because of their large sizes, and established that it requires using sorters equipped with a nozzle of an unusually large diameter: at least 200 µm. We present evidence of the sorting efficiency and sorted cell viability, as well as of the senescent nature of the sorted cells, confirmed by the detection of other senescence markers, including the expression of the CKI p21 and the presence of 53BP1 DNA damage foci. Our protocol makes it possible, for the first time, to sort senescent cells from contaminating proliferating cells and, at the same time, to sort subpopulations of senescent cells featuring senescent markers to different extents. Graphical abstract.

4.
PLoS One ; 18(1): e0279028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662875

RESUMO

Nod-Like Receptor Pyrin domain-containing protein 6 (NLRP6), a member of the Nucleotide-oligomerization domain-Like Receptor (NLR) family of proteins, assembles together with the ASC protein to form an inflammasome upon stimulation by bacterial lipoteichoic acid and double-stranded DNA. Besides its expression in myeloid cells, NLRP6 is also expressed in intestinal epithelial cells where it may contribute to the maintenance of gut homeostasis and negatively controls colorectal tumorigenesis. Here, we report that NLRP6 is very faintly expressed in several colon cancer cell lines, detected only in cytoplasmic small dots were it colocalizes with ASC. Consequently, it is very hardly detected by standard western-blotting techniques by several presently available commercial antibodies which, in contrast, highly cross-react with a protein of 90kDa that we demonstrate to be unrelated to NLRP6. We report here these results to caution the community not to confuse the 90kDa protein with the endogenous human NLRP6.


Assuntos
Inflamassomos , Neoplasias , Humanos , Inflamassomos/metabolismo , Homeostase , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
5.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377661

RESUMO

Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.


Assuntos
Antineoplásicos , Neuralgia , Animais , Camundongos , Cisplatino/efeitos adversos , Purinas/farmacologia , Neuralgia/induzido quimicamente , Receptor A2A de Adenosina , Antineoplásicos/efeitos adversos
6.
Nucleic Acids Res ; 50(13): 7493-7510, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819196

RESUMO

Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53-TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.


Assuntos
Senescência Celular , Centrômero , Heterocromatina , Encurtamento do Telômero , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Cromatina , Dano ao DNA , Regulação para Baixo , Células HeLa , Humanos , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
7.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302491

RESUMO

A rare but severe complication of curative-intent radiation therapy is the induction of second primary cancers. These cancers preferentially develop not inside the planning target volume (PTV) but around, over several centimeters, after a latency period of 1-40 years. We show here that normal human or mouse dermal fibroblasts submitted to the out-of-field dose scattering at the margin of a PTV receiving a mimicked patient's treatment do not die but enter in a long-lived senescent state resulting from the accumulation of unrepaired DNA single-strand breaks, in the almost absence of double-strand breaks. Importantly, a few of these senescent cells systematically and spontaneously escape from the cell cycle arrest after a while to generate daughter cells harboring mutations and invasive capacities. These findings highlight single-strand break-induced senescence as the mechanism of second primary cancer initiation, with clinically relevant spatiotemporal specificities. Senescence being pharmacologically targetable, they open the avenue for second primary cancer prevention.


Assuntos
Reparo do DNA , Segunda Neoplasia Primária , Animais , Carcinogênese , Transformação Celular Neoplásica , Senescência Celular , Quebras de DNA de Cadeia Simples , Dano ao DNA , Camundongos
8.
Adv Cancer Res ; 150: 285-334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33858599

RESUMO

Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.


Assuntos
Transformação Celular Neoplásica , Senescência Celular/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/genética
9.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
10.
Trends Biochem Sci ; 45(5): 371-374, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311331

RESUMO

Senescence is a complex cellular state, which can be considered as a stress response phenotype. However, the mechanisms through which cells acquire and maintain this phenotype are not fully understood. In this paper, it is argued that the unfolded protein response (UPR) may represent a signalling platform that is associated with the major senescence hallmarks.


Assuntos
Senescência Celular , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Humanos
11.
Cancer Lett ; 463: 50-58, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31404612

RESUMO

Many cancers respond to initial treatment but most of them relapse due to the persistence of dormant tumor cells. Determining the exact nature of the dormant state is crucial to develop therapies aiming to eradicate the dormant cells. Here, we argue that therapy-induced senescence of cancer cells could be an alternative form of dormancy.


Assuntos
Transformação Celular Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Humanos , Neoplasia Residual/patologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/fisiologia
12.
Cancer Lett ; 438: 187-196, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30213560

RESUMO

The incidence of carcinomas highly increases with age. However, the initial steps of the age-related molecular carcinogenic processes remain poorly characterized. We previously showed that normal human epidermal keratinocytes spontaneously and systematically escape from senescence to give rise to preneoplastic emerging cells through a process called post-senescence neoplastic emergence (PSNE). To identify molecular pathways involved in the switch from senescence to pre-transformation, we performed Connectivity Map analyses and DAVID functional annotations followed by hierarchical clustering and multidimensional scaling of the gene expression signature of PSNE cells. We identified endoplasmic reticulum stress related pathways as key regulators of PSNE. Invalidation by RNA interference of the UPR sensors PERK, ATF6α, but not IRE1α, delayed the occurrence of senescence when performed in pre-senescent cells, and increased the PSNE frequency when performed in already senescent cells. Conversely, endoplasmic reticulum stress inducers applied to already senescent cells decreased the frequency of PSNE. In conclusion, these results indicate that the activation of the UPR could protect from the early carcinogenic steps by senescence evasion. This opens new avenues to explore therapeutics that could be useful in decreasing the age-associated tumor incidence.


Assuntos
Fator 6 Ativador da Transcrição/genética , Transformação Celular Neoplásica/genética , Transcriptoma , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , Fator 6 Ativador da Transcrição/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/classificação , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
13.
Med Sci (Paris) ; 34(3): 223-230, 2018 Mar.
Artigo em Francês | MEDLINE | ID: mdl-29547108

RESUMO

When ageing, cells profoundly reprogram to enter a state called senescence. Although the link between senescence and cancer is well established, the nature of this link remains unclear and debated. We will describe in this article the properties of senescent cells and make clear on how they could promote or oppose to cancer initiation and progression. We will also consider senescence as a response to classical anti-cancer therapies and discuss how to take advantage of senescence to improve the efficacy of these therapies while decreasing their toxicity.


Assuntos
Senescência Celular/fisiologia , Neoplasias/patologia , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Progressão da Doença , Humanos , Neoplasias/genética
14.
Mech Ageing Dev ; 170: 82-91, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28803844

RESUMO

Senescence is recognized as a cellular state acquired in response to various stresses. It occurs in correlation with the activation of the Unfolded Protein Response (UPR) pathway. However, the UPR targets which might relay the establishment of the senescent phenotype are not known. Herein, we investigated whether the up-regulation of the COX2 (PTGS2) limiting enzyme in the prostaglandin biosynthesis pathway, known to mediate cellular senescence in normal human fibroblasts, could be controlled by the UPR sensors ATF6α, IRE1α and PERK. We found that UPR inducers cause premature senescence through an increase in COX2 expression, and an overproduction of prostaglandin E2 (PGE2) in wild type fibroblasts but not in ATF6α invalidated ones. In replicative senescent fibroblasts, ATF6α and IRE1α silencing abrogated COX2 up-regulation and PGE2 production. The expanded ER and the large cell size characteristics of senescent fibroblasts were both reduced upon the invalidation of COX2 as well as ATF6α. These effects of the ATF6α invalidation were prevented by favoring the import of PGE2, but not just by supplying extracellular PGE2. Taken together, our results support a critical role of ATF6α in the establishment and maintenance of cellular senescence in normal human fibroblasts via the up-regulation of a COX2/PGE2 intracrine pathway.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Senescência Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Fibroblastos/patologia , Humanos
15.
J Control Release ; 266: 198-204, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28965859

RESUMO

Intracellular delivery of functional compounds into living cells is of great importance for cell biology as well as therapeutic applications. Often it is sufficient that the compound of interest (being a molecule or nanoparticle) is delivered to the cell population as a whole. However, there are applications that would benefit considerably from the possibility of delivering a compound to a certain subpopulation of cells, or even in selected single cells. Here we report on an integrated platform for high-throughput spatially resolved nanoparticle-enhanced photoporation (SNAP) of adherent cells. SNAP enables safe, intracellular delivery of exogenously administered nanomaterials in selected subpopulations of cells, even down to the single cell level. We demonstrate the power of SNAP by selectively delivering a safe contrast agent into a subpopulation of polynucleated keratinocytes, enabling their downstream purification for unraveling their role in neoplasm formation. The flexibility and speed with which individual cells can be labeled make SNAP an ideal tool for high-throughput applications, not only for selective labeling but also for targeted drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/administração & dosagem , Queratinócitos/metabolismo , Nanopartículas Metálicas/administração & dosagem , Meios de Contraste/administração & dosagem , Células HeLa , Humanos , Lasers
16.
Cell Mol Life Sci ; 74(24): 4471-4509, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707011

RESUMO

Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.


Assuntos
Adaptação Biológica/fisiologia , Carcinogênese/patologia , Senescência Celular/fisiologia , Células Epiteliais/patologia , Estresse Fisiológico/fisiologia , Animais , Fibroblastos/patologia , Humanos
17.
Oncotarget ; 8(2): 2916-2935, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27935866

RESUMO

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFßR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.


Assuntos
Apoptose/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fatores de Transcrição Kruppel-Like/metabolismo , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Etoposídeo/farmacologia , Histona Desacetilases/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Sirtuína 1/genética , Sumoilação , Transativadores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Mol Cell Oncol ; 3(5): e1190885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857969

RESUMO

In contrast to fibroblasts, epithelial cells spontaneously escape from senescence and develop clones of mutated, transformed, and tumorigenic cells. Recently, we revealed that accumulation of unrepaired DNA single-strand breaks is a trigger of the p16 (CDKN2)-dependent cell cycle arrest pathway in senescent epithelial cells and also the mutagenic motor of post-senescence neoplastic escape.

19.
Oncotarget ; 7(42): 67699-67715, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27563820

RESUMO

Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated ß-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-ß-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.


Assuntos
Fator 6 Ativador da Transcrição/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Resposta a Proteínas não Dobradas/genética , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Células Cultivadas , Criança , Derme/citologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/genética , Feminino , Fibroblastos/citologia , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Interferência de RNA , Transdução de Sinais/genética
20.
Nat Commun ; 7: 10399, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822533

RESUMO

The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis.


Assuntos
Senescência Celular , Quebras de DNA de Cadeia Simples , Células Epiteliais/citologia , Neoplasias/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...